Площадь треугольника

У геометрической фигуры — треугольника — 3 стороны и 3 вершины. Треугольник получается, если три точки, которые не лежат на одной прямой, соединить отрезками.

Для названия треугольника используются большие латинские буквы, при этом соблюдается последовательность вершин, но начинать название можно с любой вершины.

Иногда используют знак Δ.

В зависимости от величин углов треугольника выделяют:

  • остроугольные треугольники (все углы острые, как на рисунке выше);
  • прямоугольные треугольники (один угол прямой — ∡P=90°);
  • тупоугольные треугольники (один угол тупой — ∡M).
Виды треугольников
Виды треугольников

Площадь треугольника

Прямоугольный треугольник легко представить как половину прямоугольника.

Если площадь прямоугольника равна произведению длин сторон, то для определения площади треугольника необходимо это произведение разделить на 2.

Допустим, RP = a, TP = b;

SRPT=(ab)/2.
Если треугольник не имеет прямого угла, можно построить два прямоугольника, как показано на рисунке.

Допустим, MA=BD=NC = h, AC = a.

SABC=SABD+SCBD=h⋅AD/2+h⋅DC/2=h⋅AC/2=h⋅a/2.
Как видно, достаточно в треугольнике от одной вершины провести отрезок под прямым углом к противолежащей стороне и использовать длины отрезка для определения площади треугольника.

Отрезок называют высотой треугольника.

Свойства треугольника

  1. длина любой стороны треугольника меньше суммы длин двух остальных сторон, но больше разницы длин двух остальных сторон;
  2. высота треугольника образует прямой угол со стороной, к которой проведена;
  3. площадь треугольника равна половине произведения длины высоты треугольника и длины стороны, к которой проведена высота SABC=a⋅h/2.

Пример. Можно ли построить треугольник из отрезков с длинами: 3 см, 7 см, 4 см?


Пример. Можно ли построить треугольник из отрезков с длинами: 16 см, 32 см, 18 см?


Пример. Можно ли построить треугольник из отрезков с длинами: 1 см, 3 см, 7 см ?


Одна сторона, которая образует прямой угол прямоугольного треугольника ABD, равна 12 см, другая сторона, которая образует прямой угол, в 3 раза меньше.
Определи площадь треугольника.


Рассчитай площадь треугольника ABC, если дана площадь клетки — 1 м2.


Известно, что периметр равностороннего треугольника — 21 см. Определи периметр данного четырёхугольника, который состоит из равносторонних треугольников.


Дан равносторонний треугольник. 2 раза сделано следующее:

1. на всех сторонах отмечены и соединены серединные точки.
2. На сторонах внутреннего треугольника опять отмечены и соединены серединные точки.
Треугольник, который образовался на этот раз, закрашен розовым цветом.

1. Сколько маленьких треугольников необходимо для перекрытия данного треугольника?


2. Чему равна площадь большого треугольника, если площадь розового треугольника равна 4 м²?


3. Сколько маленьких треугольников получится, если повторить эти действия (построить такую конструкцию) 4 раза?

4. Сколько маленьких треугольников получится, если повторить эти действия (построить такую конструкцию) 3 раза?


Определи площадь данных фигур, если площадь одной клетки равна 6 см2.
1)

Сколько клеток образует площадь фигуры? Чему равна площадь фигуры?



Сколько клеток образует площадь фигуры? Чему равна площадь фигуры?


Подумай, как построены данные фигуры, и определи, сколько клеток будет у следующих двух фигур, если их построить по той же закономерности.





Оцените материал
Очень плохоПлохоСреднеХорошоОтлично (голосов: 2, в среднем: 3,00 из 5)
Загрузка...

Оставь комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *